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Abstract Let X and Y be mixing shifts of finite type. Let π be a factor map from X to
Y that is fiber-mixing, i.e., given x, x̄ ∈ X with π(x) = π(x̄) = y ∈ Y , there is z ∈ π−1(y)

that is left asymptotic to x and right asymptotic to x̄. We show that any Markov measure
on X projects to a Gibbs measure on Y under π (for a Hölder continuous potential). In
other words, all hidden Markov chains (i.e. sofic measures) realized by π are Gibbs mea-
sures. In 2003, Chazottes and Ugalde gave a sufficient condition for a sofic measure to be
a Gibbs measure. Our sufficient condition generalizes their condition and is invariant under
conjugacy and time reversal. We provide examples demonstrating our result.

Keywords Markov measure · Sofic measure · Gibbs measure · Hidden Markov chain ·
Fiber-mixing · Thermodynamic formalism

1 Introduction

Markov chains and hidden Markov chains (on a finite set of symbols) are subjects of interest
to statisticians and physicists. They are also of interest in the field of symbolic dynamics and
ergodic theory. In the context of symbolic dynamics, Markov chains are studied as invari-
ant probability measures on a shift of finite type and are usually called Markov measures.
Hidden Markov chains (those arising from Markov chains through deterministic loss of in-
formation) are just images of Markov measures under a factor map on a shift of finite type.

An important case where a hidden Markov chain arises is when there is a discrete sta-
tistical process which is described by a Markov chain and some of the states taken by the
process are not distinguishable for an external observer. In that case, we define a 1-block
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factor map that lumps the indistinguishable states together, then the projection of the sta-
tistical process by this factor map gives another process which represents what the external
observer is seeing. Another case is the fuzzy Potts model [9], which is obtained by lumping
some states together from the Potts model which generalizes the Ising model.

This work is concerned with the question of when a hidden Markov chain (realized as the
projection of a Markov measure by a factor map) is a Gibbs measure (on a one-dimensional
lattice) with a Hölder continuous potential. We generalize the result in [3] regarding this
question to give a more general sufficient condition that depends only on intrinsic proper-
ties of a factor map between general dynamical systems (as opposed to properties that can
change when the shift of finite type and the factor map are replaced via a conjugacy).

There are other related results on this question. Pollicott and Kempton proved in [6, 10]
that if a fiber-mixing factor map (between shifts of finite type) satisfies the condition that,
to decide whether or not some symbol x0 projecting to z0 can be extended to the whole
point x projecting to z, one only needs to look at a bounded window z−N · · · zN , then the
map sends Gibbs measures to Gibbs measures. Redig and Wang investigated preservation of
Gibbsianness in a non-dynamical setting, i.e., where potentials defined on finite regions are
not necessarily invariant under the shift map [11]. They also considered statistical transfor-
mations in addition to deterministic transformations described here by factor maps.

In general, the projection of a Markov measure is not a Markov measure. So it is nat-
ural to ask first when the projection is a Markov measure. There were many approaches to
this problem, giving sufficient and necessary conditions for the projection to be a Markov
measure. A recent survey can be found in [2]. This topic is also discussed in [5].

Since a lot of probability distributions arising from statistical mechanics can be assumed
to be Boltzmann distributions, there has been interest in Gibbs measures which formalize
Boltzmann distributions in rigorous mathematical settings (especially in thermodynamical
formalism and ergodic theory). The rich and rigorous theory of Gibbs measures and equi-
librium states on shifts of finite type is developed and studied by R. Bowen and D. Ruelle
[1, 12]. Markov measures (on a shift of finite type) are exactly Gibbs measures with a lo-
cally constant potential. So Gibbs measures can be thought of as a generalization of Markov
measures. Gibbs measures with Hölder continuous potentials are the most well understood
Gibbs measures and are easier to deal with. So it is natural to ask then when a measure (in
this work, the projection of a Markov measure) is a Gibbs measure with a Hölder continuous
potential.

There are measures that fail to be Gibbsian that arise from other useful contexts or when
Gibbsianness is not preserved. Dobrushin thus proposed in [4] the notion of weakly Gibb-
sianness where the finite-volume Hamiltonian is required to be well defined only on a set of
measure 1, and to extend the thermodynamic formalism of Gibbs measures to a broader class
of measures like weakly Gibbs measures. On this direction, Lörenczi et al. [8] investigated
sufficient conditions for the quasilocality of images of Gibbs measures on the d-dimensional
lattice Z

d . Külske et al. [7] demonstrated that the class of weakly Gibbs measures may be
too broad for a reasonable thermodynamic formalism and suggested that the class of almost
Gibbs measures (conditional probabilities are required to be continuous on a set of measure
1) would be fine.

2 Main Results

In [3], Chazottes and Ugalde came up with the following result:
Let X and Y be mixing 1-step one-sided shifts of finite type. Let π : X → Y be a one-

block factor map with the following two properties:
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(1) (right eresolving property) for a 2-block ab in Y and a letter ā that maps to a under π ,
the letter ā can be extended to a 2-block āb̄ in X that maps to ab;

(2) (π -positive words condition) given a periodic point y ∈ Y with period m less than or
equal to the number of letters appearing in Y , for any letters x0, xm−1 respectively map-
ping to y0, ym−1, the pair of letters can be extended to a word x0 · · ·xm−1 of length m in
X that maps to y0 · · ·ym−1 (the block y0 · · ·ym−1 is said to be π -positive).

Then for any 1-step Markov measure μ on X, the image ν = μ ◦ π−1 is the unique Gibbs
measure for the Hölder continuous potential f given by

f (y) = lim
n→∞ log

(
ν[y0 · · ·yn−1]
ν[y1 · · ·yn−1]

)
(2.1)

for y ∈ Y .
The main idea of proving this result was to reduce the problem of showing the Gibbs

property of certain hidden Markov chains to one of proving the projective convergence of
an inhomogeneous product of nonnegative matrices. In order to do so, the authors of [3]
used the contracting property of positive matrices (simply meaning matrices where every
entry is positive, in this work) and the idea of Birkhoff’s contraction coefficients, which is
studied in [13]. Our approach will be similar to theirs except that we apply their argument
to matrices whose positive entries form a submatrix. Using this argument, we are able to do
away with the first condition (right eresolving property), which was a technical condition re-
quired because of the restrain to use only positive matrices. First, we establish the following
result where the spaces are 1-step shifts of finite type.

Theorem 2.1 Let X and Y be mixing 1-step shifts of finite type. Let π : X → Y be a 1-
block factor map such that there is k ∈ N for which every word y1 · · ·yk of length k in Y is
π -subpositive, i.e., for any pair of pre-images of y0 · · ·yk , there is another pre-image that
starts from the starting letter of the first pre-image and ends with the last letter of the second
pre-image. Then for any 1-step Markov measure μ on X, the image ν = μ ◦ π−1 is the
unique Gibbs measure for the Hölder continuous potential f given by the formula (2.1).

A word is π -subpositive if the product of some matrices associated with it is a matrix
whose positive entries form a submatrix. This result transfers to the case of one-sided shifts
of finite type. We generalize this to the case where shifts of finite type have memory bigger
than 1 and the factor maps are not necessarily 1-block codes.

Theorem 2.2 Let X and Y be mixing shifts of finite type. Let π : X → Y be a factor map
that is fiber-mixing. Then for any Markov measure μ on X, the image ν = μ ◦ π−1 is the
unique Gibbs measure for the Hölder continuous potential f given by the formula (2.1).

Remark 2.1 Fiber-mixing property is a conjugacy-invariant property, i.e., if π : X → Y is a
fiber-mixing factor map between two shifts of finite type and π̃ : X̃ → Ỹ is another factor
map such that there are conjugacies βX : X → X̃, βY : Y → Ỹ with π ◦βX = βY ◦π , then π̃

is also fiber-mixing. The property is also time-symmetric, i.e., if γX : X → γX(X) is defined
by γX(x) = (x−i )i∈Z and γY in a similar way, then the factor map γY ◦ π ◦ γ −1

X : γX(X) →
γY (Y ) is also fiber-mixing.

Corollary 2.3 Let X and Y be mixing shifts of finite type and X be 1-step. Let π : X → Y

be a 1-block factor map with the property that there is a finite set S of π -subpositive words
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in Y such that each point of Y contains some word in S . Then the conclusion of Theorem 2.2
holds.

In Sect. 3 we collect some definitions and basic results. In Sects. 4 and 5 we prove the
main theorems. Some examples demonstrating the results will be given.

3 Preliminaries

A (two-sided) shift space or subshift is a set X of bi-infinite sequences of symbols from a
fixed alphabet A (a finite set) such that X is closed with respect to the product topology
of AZ and invariant under the shift map σ : AZ → AZ (defined by (σx)i := xi+1 for any
x ∈ AZ and i ∈ Z). Let 0 < θ < 1. Then the shift space X is a compact metric space with
metric given by

dθ (x, y) = θmin{|j | : xj �=yj }

for x, y ∈ X with x �= y. The metric induces the Tychonoff product topology on X. All dif-
ferent metrics given by different values of θ give rise to the same topology on X. The space
X and σ together form a topological dynamical system. Let C(X) be the set of continuous
functions on X and M(X) the set of Borel σ -invariant probability measures on X. Denote
by AX the alphabet of X. For each n ∈ N, let Bn(X) be the set of words that occur in a point
of X. Define B(X) = ⋃∞

n=1 Bn(X). We have AX = B1(X) in particular.
A shift space can be alternatively described by a set of forbidden words. A shift space,

with the alphabet A, determined by the set F of forbidden words over A is defined as

XF = {x ∈ AZ : no words in F occur in x as a subword.}

All shift spaces can be defined in this way.
A shift of finite type or subshift of finite type is a shift space that can be described by a

finite set of forbidden words. A shift of finite type is said to be an n-step shift of finite type
if it can be described by a set of forbidden words of length ≤ n + 1. A 1-step shift of finite
type is usually described by a square matrix of 0s and 1s (often called a 0-1 matrix). If A is
the k by k 0-1 matrix, the corresponding shift of finite type is defined as

XA = {x ∈ {1, . . . , k}Z : A(xi, xi+1) = 1 for all i ∈ Z}.

A factor map π from a shift space X to another shift space Y is a continuous surjective
map satisfying π ◦σX = σY ◦π . For such a map, there are m ≥ 0 (memory), n ≥ 0 (anticipa-
tion) and a map � : Bn+m+1(X) → B1(Y ) such that (π(x))i = �(xi−m · · ·xi+n) for all x ∈ X

and i ∈ Z, and π is called a (m + n + 1)-block factor map.
A factor map π : X → Y between shift spaces induces a surjective map from M(X) onto

M(Y ), denoted again by π , which is defined by (πμ)(B) = μ(π−1(B)) for μ ∈ M(X) and
a Borel subset B of Y .

3.1 Markov Measures

A 1-step Markov measure on a 1-step shift of finite type XA determined by an irreducible
0-1 transition matrix A can be defined as follows. Let P be a stochastic matrix compatible
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with A, i.e., A(i, j) > 0 exactly when P (i, j) > 0. Let p be the unique probability vector
with pP = p. The 1-step Markov measure μP ∈ M(XA) is defined by

μP [w] = p(a0)P (a0, a1)P (a1, a2) · · ·P (an−1, an)

for all w = a0a1 · · ·an ∈ Bn+1(XA) and for all n ∈ N. A measure on a shift of finite type on
a shift of finite type is called a Markov measure if it is conjugate to a 1-step Markov mea-
sure. Every Markov measure is fully supported, i.e., every nonempty open set has positive
measure.

Let X be a shift of finite type. A function f ∈ C(X) is said to be locally constant if
there exist m,n ∈ Z with m ≤ n such that f (x) = f (z) for any x, z ∈ X with x[m,n] = z[m,n].
A measure μ ∈ M(X) is a Markov measure if and only if it is a (unique) equilibrium state
of a locally constant function f on X, i.e., h(μ)+∫

f dμ = P (f ) where h(μ) is the entropy
of μ and P (f ) is the topological pressure of f .

3.2 Sofic Measures

A sofic shift is an image of a shift of finite type under a factor map. A sofic measure (also
called a hidden Markov measure) on a sofic shift is defined to be the image of a Markov
measure under a factor map from a shift of finite type to a sofic shift.

3.3 Gibbs Measures

Let X be a mixing shift of finite type. Let f ∈ C(X). A measure μ ∈ M(X) is called a
Gibbs measure for f if there exist C > 0 and P ∈ R such that

1

C
<

μ[x0 · · ·xn−1]
exp(−nP + ∑n−1

i=0 f (σ ix))
< C

for all x ∈ X and n ∈ N. The function f is called a potential of μ. If P = 0, then f is called
a normalized potential of μ.

Gibbs measures can also be defined using conditional probabilities [12], but the two
definitions are equivalent if f is Hölder continuous.

A function f ∈ C(X) is said to be Hölder continuous if there exist C > 0 and γ ∈ (0,1)

such that |f (x) − f (z)| ≤ C · γ n for all n ∈ Z
+ and x, z ∈ X with x[−n,n] = z[−n,n], or

equivalently, there exist C,α > 0 such that

|f (x) − f (z)| ≤ C · (dθ (x, z))α

for all x, z ∈ X.
Every Hölder continuous function on X has a unique Gibbs measure. For a detailed

account on Gibbs measures on shifts of finite type, consult [1] which contains a proof of the
existence and uniqueness of such a measure.

The following lemma describes the relationship between Gibbs measures and their po-
tential functions. A summable sequence {cn} in R

+ means that
∑∞

n=1 cn < ∞.

Lemma 3.1 [3] Let X be a mixing shift of finite type and μ ∈ M(X). Let f be a Hölder
continuous function on X and {cn} be a summable sequence in R

+ such that∣∣∣∣f (x) − ln

(
μ[x0 · · ·xn]
μ[x1 · · ·xn]

)∣∣∣∣ ≤ cn

for all x ∈ X and n ∈ N. Then μ is the Gibbs measure for f and f is its normalized potential.
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3.4 Fiber Mixing Factor Maps

Given a 1-block factor map π : X → Y , for a1 · · ·ak ∈ Bk(X), we denote by π(a1 · · ·ak) the
word π(a1) · · ·π(ak) ∈ Bk(Y ), and for b1 · · ·bk ∈ Bk(Y ), we denote by π−1(b1 · · ·bk) the set
of all words in Bk(X) that map to b1 · · ·bk .

Definition 3.1 Let π : X → Y be a 1-block factor map between shift spaces.

(1) A word w = b1 · · ·bk in Y is called π -positive or positive if, given a∗ ∈ π−1(b1) and
a∗ ∈ π−1(bk), there is τ1 · · · τk ∈ π−1(w) with τ1 = a∗ and τk = a∗.

(2) A word w = b1 · · ·bk in Y is called π -subpositive or subpositive if, given u1 · · ·uk and
v1 · · ·vk in π−1(w), there is τ1 · · · τk ∈ π−1(w) with τ1 = u1 and τk = vk .

Let X and Y be 1-step shifts of finite type. Any extension of a subpositive word is also
subpositive, i.e., if w is subpositive and uwv ∈ B(Y ), then uwv is also subpositive.

Two points x, z in a shift space are said to be left-asymptotic (right-asymptotic, respec-
tively) if there is n ∈ Z with x(−∞,n] = z(−∞,n] (x[n,∞) = z[n,∞), respectively), or equivalently,
if limn→−∞ d(σ nx,σ nz) = 0 (limn→∞ d(σ nx,σ nz) = 0, respectively).

Definition 3.2 Let π : X → Y be a factor map between shift spaces.

(1) π is said to be right continuing if, whenever x ∈ X, y ∈ Y , and π(x) is left-asymptotic
to y, there is z ∈ π−1(y) that is left-asymptotic to x. Left continuing can be defined
similarly.

(2) π is said to be fiber-mixing if, given x, x̄ ∈ X with π(x) = π(x̄) = y ∈ Y , there is
z ∈ π−1(y) that is left asymptotic to x and right asymptotic to x̄.

(3) Let π be a 1-block factor map. Then π is said to be right eresolving if, whenever a, b ∈
AY with ab ∈ B2(Y ) and ā ∈ π−1(a), there is b̄ ∈ π−1(b) such that āb̄ ∈ B2(X). Left
eresolving can be defined similarly.

The following lemma relating the subpositive property to the fiber-mixing property was
proved by U. Jung.

Lemma 3.2 Let X be a 1-step shift of finite type and Y be a sofic shift. Let π : X → Y be a
1-block factor map. Then the following are equivalent.

i) There is k ∈ N such that every word in Bk(Y ) is π -subpositive.
ii) π is fiber-mixing.

Proof First, assuming that (i) is true, let x, x̄ ∈ X and π(x) = π(x̄) = y ∈ Y . Since
w = y1 · · ·yk ∈ Bk(Y ) is subpositive and π(x1 · · ·xk) = π(x̄1 · · · x̄k) = w, there is τ1 · · · τk ∈
π−1(w) with τ1 = x1 and τk = x̄k . Define

z = · · · · · ·x−2x−1.x0τ1τ2 · · · τkx̄k+1x̄k+2 · · · · · · .

Since X is a 1-step shift of finite type, we have z ∈ X. Also π(z) = y. Moreover, z is left
asymptotic to x and right asymptotic to x̄. Thus (i) implies (ii).

Conversely, let π be fiber-mixing. Suppose there is no k ∈ N such that every word in
Bk(Y ) is subpositive. Then for each n ∈ N, there exist x(n), x̄(n) ∈ X and y(n) ∈ Y such that

π(x
(n)
[−n,n]) = π(x̄

(n)
[−n,n]) = y

(n)
[−n,n]
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and there is no τ−n · · · τn ∈ π−1(y
(n)
[−n,n]) with τ−n = x

(n)
−n and τn = x̄(n)

n . Let (x, x̄, y) be a
limit point of the sequence {(x(n), x̄(n), y(n))}, which exists because X × X × Y is compact.
Then π(x) = π(x̄) = y. Since π is fiber-mixing, there is z ∈ π−1(y) and d > 0 such that
x(−∞,−d] = z(−∞,−d] and x̄[d,∞) = z[d,∞).

Let s be an integer greater than d such that we have x[−d,d] = x
(s)
[−d,d], x̄[−d,d] = x̄

(s)
[−d,d]

and y[−d,d] = y
(s)
[−d,d]. Such s exists because (x, x̄, y) is a limit point of the sequence

{(x(n), x̄(n), y(n))}. It is easy to check that the word τ−s · · · τs := x
(s)

[−s,−d−1]z[−d,d]x̄
(s)

[d+1,s] is

in π−1(y
(s)
[−s,s]). This is a contradiction. Thus (ii) implies (i). �

Corollary 3.3 Let X be a 1-step shift of finite type and Y be a sofic shift. Let π : X → Y be
a 1-block factor map that is fiber-mixing. Then it is bi-continuing, i.e., both right continuing
and left continuing.

Remark 3.1 It is easy to prove that the condition (i) implies that Y is a k-step shift of finite
type. Therefore the image of a shift of finite type under a fiber-mixing factor map is always
a shift of finite type.

3.5 The Projective Metric and Subpositive Matrices

Two m × n nonnegative matrices A and B are said to be compatible if they have the same
set of indices of positive entries, i.e., Aij > 0 if and only if Bij > 0. In this case we write
A ≡ B . Similarly, two nonnegative vectors v,w in R

n are said to be compatible if vi > 0
exactly when wi > 0. We write v ≡ w.

Definition 3.3 Let v,w be two compatible nonnegative vectors in R
n. If v = w = 0, then

put d(v,w) = 0. Otherwise, i.e., v �= 0 and w �= 0, then define

d(v,w) = log

(
max{vi/wi |vi > 0}
min{vi/wi |vi > 0}

)
.

Note that d(v,w) = 0 if and only if v = αw for some α > 0. If V is a class of compatible
nonnegative vectors, then d is a pseudometric on V and is called the projective metric.

Lemma 3.4 Let A be an m×n nonnegative matrix and v,w be two compatible nonnegative
vectors in R

n. Then the following hold.

(1) The vectors Av and Aw are compatible and d(Av,Aw) ≤ d(v,w).
(2) Let Av �= 0 (and hence Aw �= 0). Then

∣∣∣∣ log
1 · Av

1 · v − log
1 · Aw

1 · w
∣∣∣∣ ≤ d(v,w)

where 1 = (1, . . . ,1).

Proof We may assume that v,w �= 0. Clearly, Av and Aw are compatible. Let

ea = min{vi/wi |vi > 0} and eb = max{vi/wi |vi > 0}
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for a, b ∈ R. Then eaw ≤ v ≤ ebw. Since A ≥ 0, it follows that eaAw ≤ Av ≤ ebAw. Thus
d(Av,Aw) ≤ d(v,w), which verifies (1). Also

ea · 1 · w ≤ 1 · v ≤ eb · 1 · w
and

ea · 1 · Aw ≤ 1 · Av ≤ eb · 1 · Aw.

Thus

ea−b · 1 · Aw

1 · w ≤ 1 · Av

1 · v ≤ eb−a · 1 · Aw

1 · w
from which (2) follows. �

Definition 3.4 Let A be an m × n nonnegative matrix. Define τ(A) to be the infimum of
nonnegative numbers C such that

d(Av,Aw) ≤ C · d(v,w)

for any two compatible vectors v,w in (Rn)+. That is,

τ(A) = sup
v,w∈(Rn)+

v≡w,d(v,w)>0

d(Av,Aw)

d(v,w)
.

By Lemma 3.4 (1), we have τ(A) ≤ 1. Also d(Av,Aw) ≤ τ(A)d(v,w) for any two
compatible vectors v,w in (Rn)+. It is also easy to see the following.

Lemma 3.5 Let A be an m × n nonnegative matrix and B be an n × p nonnegative matrix.
Then τ(AB) ≤ τ(A)τ(B).

Definition 3.5 An m × n nonnegative matrix A is said to be subpositive if there are non-
empty subsets D ⊆ {1, . . . ,m} and E ⊆ {1, . . . , n} such that A(i, j) > 0 exactly when (i, j) ∈
D × E .

Lemma 3.6 Let A be an m × n nonnegative matrix that is subpositive. Then τ(A) < 1.

Proof First, assume that A > 0. For each nonempty subset S ⊆ {1, . . . , n}, let AS be the
m × |S| submatrix of A corresponding to the index set {1, . . . ,m} × S. An argument in [13]
shows that there is 0 < CS < 1 such that

d(ASv,ASw) ≤ CS · d(v,w)

for any two compatible vectors v,w in (RS)+ with v,w > 0. It follows that

τ(A) ≤ max
S

CS < 1.

In the general case of nonnegative matrices, by rearranging the indices of A, we can assume
that A is of the form

A =
[
B O

O O

]
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where B is a p × q positive matrix with p,q ≥ 1. Then A can be written as the product

A =
[
Ip

O

]
B

[
Iq O

]

where In is the n × n identity matrix. By Lemma 3.5 and the above argument, we have
τ(A) ≤ τ(B) < 1. This completes the proof. �

4 Proof of Theorem 2.1

In this section we prove Theorem 2.1. Throughout the section we fix a 1-block factor map
π : X → Y between mixing 1-step shifts of finite type. Let X and Y be represented by the
0-1 matrices A and B , respectively. Let μ be a 1-step Markov measure on X and ν = πμ ∈
M(Y ).

For each b ∈ AY , let Mb be the AX × AX identity matrix. For each b1b2 ∈ (AY )2, let
Mb1b2 denote the AX × AX nonnegative matrix given by

Mb1b2(i, j) =
{

μ[ij ]/μ[j ] if ij ∈ B2(X) and π(ij) = b1b2

0 otherwise

and mb1 denote the column vector in (RAX )+ given by

mb1(i) =
{

μ[i] if π(i) = b1

0 otherwise.

For each v = b1 · · ·bn ∈ (AY )n, n ≥ 2, define

Mv = Mb1···bn = Mb1b2 · · ·Mbn−1bn

and

mv = mb1···bn = Mb1···bnmbn .

Let v ∈ (AY )n for n ≥ 2. Then for each i, j ∈ AX ,

Mv(i, j) =
∑

ω∈Bn−2(X)

iωj∈π−1(v)

μ[iωj ]
μ[j ]

and

mv(i) =
∑

ω∈Bn−1(X)

iω∈π−1(v)

μ[iω]. (4.1)

It is straightforward to prove the following.

Lemma 4.1 Let v ∈ (AY )n for n ≥ 2. The following are equivalent.

i) v ∈ B(Y ).
ii) Mv �= O .
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iii) mv �= 0.

Lemma 4.2 Let v = b1 · · ·bn ∈ (AY )n for n ≥ 2. Then

ν(v) =
∑
i∈AX

mv(i) = 1 · mv.

Proof Note that μ and ν are fully supported. First, if v /∈ B(Y ), i.e., ν[v] = 0, then it follows
from Lemma 4.1 that mv = 0. Next, let v ∈ B(Y ) so that ν[v] > 0. By (4.1),

∑
i∈AX

mv(i) =
∑
i∈AX

∑
ω∈Bn−1(X)

iω∈π−1(v)

μ[iω]

=
∑

ω∈π−1(v)

μ[ω] = ν[v]

which completes the proof. �

We state the relationship between subpositive words and subpositive matrices which is
easy to show.

Lemma 4.3 Let v ∈ Bn(Y ) for n ≥ 2. Then v is π -subpositive if and only if Mv is subposi-
tive.

For the rest of this section we assume that every word in Bk(Y ) is subpositive, or equiv-
alently, every word in Bk(Y ) contains a subpositive word. We may assume that k ≥ 2. By
Lemma 4.3, for each v ∈ Bk(Y ), the matrix Mv is subpositive. So τ(Mv) < 1 by Lemma 3.6.
Define

C = max
v∈Bk(Y )

τ (Mv) < 1. (4.2)

Put l = k − 1 ≥ 1. Let p ∈ Z
+ and v = b0 · · ·bpl ∈ B(Y ). By Lemma 3.5, we have

τ(Mv) ≤ τ(Mb0···bl
)τ (Mbl ···b2l

) · · · τ(Mb(p−1)l ···bpl
) ≤ Cp. (4.3)

Let n ≥ l and v = b0 · · ·bn ∈ Bn+1(Y ). By Lemma 4.1, we have

mb0···bl
= Mb0···bl

mbl
�= 0 and mv = Mb0···bl

mbl ···bn �= 0. (4.4)

Since Mb0···bl
is subpositive, the vectors mb0···bl

and mb0···bn are compatible.

Lemma 4.4 There is E ≥ 0 such that

d(mb0···bl
,mb0···bn) ≤ E

for all n ≥ l and b0 · · ·bn ∈ Bn+1(Y ).

Proof Let C < 1 be given as in (4.2). Define

D = max
b0···bn∈Bn+1(Y )

l≤n≤2l

d(mb0···bl
,mb0···bn) < ∞
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and

E =
∞∑
i=1

Ci−1D = D

1 − C
< ∞.

Let n = t l + r ≥ l with t ≥ 1 and 0 ≤ r < l. Let b0 · · ·bn ∈ Bn+1(Y ). Then by (4.4) and (4.3),
we have

d(mb0···bl
,mb0···bn) ≤

t−1∑
i=1

d(mb0···bil
,mb0···b(i+1)l

) + d(mb0···btl
,mb0···bn)

≤
t−1∑
i=1

τ(Mb0···b(i−1)l
)d(mb(i−1)l ···bil

,mb(i−1)l ···b(i+1)l
)

+ τ(Mb0···b(t−1)l
)d(mb(t−1)l ···btl

,mb(t−1)l ···bn)

≤
t−1∑
i=1

Ci−1D + Ct−1D

≤ E

which completes the proof. �

Lemma 4.5 There exist F ≥ 0 and 0 < G < 1 such that

d(my[1,p] ,my[1,q]) ≤ FGp

for all y ∈ Y and p,q ∈ N with k ≤ p ≤ q .

Proof Let C be given as in (4.2) and E be given as in Lemma 4.4. Put

F = 2EC−2−1/l and G = C1/l .

Let y ∈ Y and p,q ∈ N with k ≤ p ≤ q . Let p = 1 + t l + r with t ≥ 1 and 0 ≤ r < l. By
Lemma 4.4,

d(my[1,p] ,my[1,1+t l]) = τ(My[1,1+(t−1)l])d(my[1+(t−1)l,p] ,my[1+(t−1)l,1+t l])

≤ Ct−1E.

Similarly, we have

d(my[1,q] ,my[1,1+t l]) ≤ Ct−1E.

Thus

d(my[1,p] ,my[1,q]) ≤ 2Ct−1E ≤ 2C(p−1)/ l−2E = FGp

which completes the proof. �

Now we are ready to prove that the image measure ν is a Gibbs measure.
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Proof of Theorem 2.1 Let F and G be given as in Lemma 4.5. For y ∈ Y and n ∈ N, define

f (y[0,n]) = log

(
ν[y[0,n]]
ν[y[1,n]]

)
= log

(
1 · my[0,n]
1 · my[1,n]

)

= log

(
1 · My0y1 · my[1,n]

1 · my[1,n]

)
.

Let y ∈ Y and p,q ∈ N with k ≤ p ≤ q . Using Lemma 4.5, we obtain

|f (y[0,p]) − f (y[0,q])| ≤ d(my[1,p] ,my[1,q]) ≤ FGp.

Choose F1 > 0 large enough that

|f (y[0,p]) − f (y[0,k])| ≤ F1G
k

for all y ∈ Y and p = 1, . . . , k. Let F2 = max{F + F1,2F1}. Then

|f (y[0,p]) − f (y[0,q])| ≤ F2G
p

for all y ∈ Y and p,q ∈ N with p ≤ q . So, given y ∈ Y , the limit

f (y) = lim
q→∞f (y[0,q])

exists and for any p ∈ N, we have

|f (y[0,p]) − f (y)| ≤ F2G
p.

Finally, we show that f : Y → R mapping y to f (y) is a Hölder continuous potential.
Let p ∈ N. Choose any y, z ∈ Y with y[0,p] = z[0,p] and then deduce that

|f (y) − f (z)| ≤ |f (y) − f (y[0,p])| + |f (y[0,p]) − f (z)| ≤ 2F2G
p.

Thus f is Hölder continuous. Lemma 3.1 implies that ν is a Gibbs measure for f . �

5 Proof of Theorem 2.2

In this section we prove Theorem 2.2 and Corollary 2.3.

Proof of Theorem 2.2 We may assume that π has memory 0, i.e., there exist N ∈ N and a
block map � such that (π(x))0 = �(x[0,N]) for all x ∈ X. (If π has memory m > 0, then
replace π with π ◦σ k .) Let X be an m1-step shift of finite type and μ be an m1-step Markov
measure on X. Let Y be an n-step shift of finite type. Put m = max{m1, n + N}. Let X̃ be
the m-th higher block shift of X and Ỹ the n-th higher block shift of Y . Then X̃ and Ỹ are
1-step shifts of finite type. Clearly, μ̃ = μ ◦ β−1

X is a 1-step Markov measure on X̃ where
βX : X → X̃ is the m-th higher block code.

Define

π̃ = βY ◦ π ◦ β−1
X
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where βY : Y → Ỹ is the n-th higher block code.

X̃
π̃−−−−→ Ỹ

βX

�⏐⏐
�⏐⏐βY

X −−−−→
π

Y

Then π̃ is a 1-block factor map from X̃ onto Ỹ . By Lemma 3.2, the map π̃ satisfies the
hypothesis of Theorem 2.1. So ν̃ = μ̃ ◦ π̃−1 is a Gibbs measure for the Hölder continuous
potential f̃ given by the formula (2.1) corresponding to ν̃. Let

ν = μ ◦ π−1 = ν̃ ◦ βY .

Then ν is a Gibbs measure for the function f = f̃ ◦ βY . It is easy to see that f is a Hölder
continuous function given by the formula (2.1). �

Proof of Corollary 2.3 It is easy to see that π is fiber-mixing. Apply Theorem 2.2. �

6 Examples

In [3] the authors present a way to define a class of factor maps satisfying their original
sufficient condition and it can be used to construct various examples demonstrating their
result. Here we provide an example of a factor map which is fiber-mixing but is neither right
eresolving nor left eresolving.

Example 6.1 Let X be the mixing 1-step shift of finite type defined by the matrix

A =

⎡
⎢⎢⎢⎢⎣

0 0 1 0 0
1 0 0 0 1
0 0 0 1 0
1 0 0 0 1
0 1 1 1 0

⎤
⎥⎥⎥⎥⎦

where AX = {1,2,3,4,5}. Let Y be the mixing 1-step shift of finite type defined by the
matrix

B =
⎡
⎣0 1 1

1 0 0
0 1 0

⎤
⎦

where AY = {1,2,3}. Let π : X → Y be the 1-block factor map such that

π(1) = π(5) = 1, π(2) = π(4) = 2, π(3) = 3.

This example is obtained from the one in [3] by removing two edges.
Consider the word 12 ∈ B2(Y ) and note that A12 = A14 = 0, i.e., neither 12 nor 14 is

in B2(X). So π is not right eresolving; similarly, it is not left eresolving (because of the
word 32 ∈ B2(Y )). Thus the original result of Chazottes and Ugalde cannot be applied here.
Meanwhile, the word 21 occurs in every point of Y and is subpositive. Therefore, π is fiber-
mixing. By Corollary 2.3 every Markov measure on X projects to a Gibbs measure on Y .



1068 J. Yoo

Not every factor map sends Markov measures to Gibbs measures. There is a simple
example of a factor map from a mixing 1-step shift of finite type onto the full 2-shift for
which the limit in the formula (2.1) for some sofic measure does not exist at some point [3].
We give an example of a factor map for which the limit in the formula (2.1) always exists at
every point for all images of 1-step Markov measures and such images are Gibbs measures
except for some one-parameter family of Markov measures on X.

Example 6.2 Let X be the mixing 1-step shift of finite type defined by the matrix

A =
⎡
⎣0 1 0

0 1 1
1 0 1

⎤
⎦

where AX = {1,2,3}. Let π be a 1-block factor map defined on X such that π(1) = 1̃ and
π(2) = π(3) = 2̃. Then Y = π(X) is the 2-step shift of finite type determined by the set
{1̃1̃, 1̃2̃1̃} of forbidden blocks. Let μ be the 1-step Markov measure on X defined by the
matrix

P =
⎡
⎣ 0 1 0

0 p 1 − p

1 − q 0 q

⎤
⎦

where 0 < p,q < 1. Then p = μ[22]/μ[2] and q = μ[33]/μ[3]. Define ν = μ ◦ π−1.
A lengthy calculation shows that the limit

lim
n→∞ log

(
ν[y0 · · ·yn]
ν[y1 · · ·yn]

)

exists for each y ∈ Y . If there is no k ≥ 1 such that yk = 1̃, then

ν[y0 · · ·yn]
ν[y1 · · ·yn] = ν[y02̃n]

ν[2̃n] .

If there is such k ≥ 1 and k is chosen to be minimal, then since y1 · · ·yk = 2̃k−11̃ and there
is only one preimage for 1, we have

ν[y0 · · ·yn]
ν[y1 · · ·yn] = ν[y02̃k−11̃]

ν[2̃k−11̃] .

The numerator and denominator of the previous fraction (in each case) are of the form
ν[a2̃mb] where a, b ∈ {1̃, 2̃}. Their values can be written as

ν[a2̃mb] = �aM
m−1
2̃2̃

rb

where �a, rb are row and column vectors depending on a, b and

M2̃2̃ =
⎡
⎣0 0 0

0 p μ[23]/μ[3]
0 0 q

⎤
⎦ .
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In the case where p �= q , the logarithmic ratio log(ν[y0 · · ·yn]/ν[y1 · · ·y1]) converges
exponentially and uniformly. In particular, there exist F > 0 and 0 < G < 1 such that

∣∣∣∣ log

(
ν[y0 · · ·yn]
ν[y1 · · ·yn]

)
− log

(
ν[y0 · · ·ym]
ν[y1 · · ·ym]

)∣∣∣∣ < FGn

for all y ∈ Y and n,m ∈ N with n < m. From this, it follows that ν is a Gibbs measure for
which the limit in the formula (2.1) defines a Hölder continuous potential.

Consider the case where p = q and note that

ν[2̃n] = μ[2]pn−1
(

2 + n · 1 − p

p

)

for all n ∈ N. Put D = 2μ[2]/p and E = (1 − p)μ[2]/p2, so that

ν[2̃n] = pn(D + En).

If ν were a Gibbs measure for a normalized potential f , then it would follow that for
some constants C1,C2 > 0,

C1 <
ν[2̃n]

exp(n · f (2̃∞))
< C2

which would imply that

C1 <
D + En

exp(n · f (2̃∞) − n logp)
< C2.

But this is impossible. Thus ν is not a Gibbs measure in the case where p = q , although the
limit in the formula (2.1) exists.

Summarizing on an intuitive level, the failure of Gibbsianness here comes as follows: as
long as preimages of 2̃n are concerned, all that matters are vertex 2 and vertex 3 and that
there is a way to go from 2 to 3 but there is no way from 3 to 2 within preimages of 2̃n.
So essentially we have two loops with one way path connecting them. When the loops are
weighed the same, i.e., when p = q , no loop is dominated by the other loop and therefore
all preimages of 2̃n count the same (up to a bounded factor) and hence ν[2̃n] equals npn up
to a bounded factor thereby introducing the undesirable factor n.

7 Closing Section

We showed that a fiber-mixing condition is sufficient for the factor map to send all Markov
measures to Gibbs measures. The fiber-mixing condition turned out to be conjugacy-
invariant and time-symmetric. We presented an example showing that this generalization
is nonempty.

It remains open to investigate what happens when Y is a general sofic shift and not a shift
of finite type. It can be proved that the image of a shift of finite type under a right-continuing
factor map is always a shift of finite type [14]. So if one wants to extend the results to general
sofic shifts, one needs to manage to escape the class of right-continuing or left-continuing
factor maps.
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